

- Crude Oil very complex mixture of hundreds, even thousands of chemical compounds
- Chemical composition can vary tremendously
 - From different producing regions
 - Possible even within a particular formation

- Hydrocarbons are most abundant compounds in crude oil
 - Carbon (80 87%)
 - Hydrogen (10 15%)
- Non-hydrocarbon compounds, typically <10%
 - Sulfur (0 -10%)
 - − Nitrogen (0 − 1%)
 - Oxygen (0 5%)
 - Trace Metals
 - V, Ni, Fe, Al, Na, Ca, Cu, U

Basics of Crude Oil

Classes of Hydrocarbons

- Three classes of compounds
 - Alkanes, or Aliphatics, or Paraffins
 - Cycloalkanes or Cycloparaffins or Napthenes
 - Aromatics
- Paraffins or Aliphatics (Alkanes)
 - Carbon atoms bound to all Hydrogen atoms, fully "saturated"; stable, less reactive than others
 - Methane, ethane, propane, butane, pentane

Classes of Hydrocarbons

- Napthenes or Cycloalkanes (Cycloparaffins)
 - Saturated hydrocarbons arranged in rings
 - Cyclopropane, cyclobutane, cyclopentane
- Aromatics (Mononuclear & Polynuclear)
 - Contain at least one or more benzene rings
 - Those with 2 or more are PNAs or PAHs
 - Benzene, napthalene, benzo[a]pyrene,

benzo[a]pyrene

Basics of Crude Oil

Non-hydrocarbon Constituents

- Sulfur Compounds
 - Very important non-hydrocarbon compounds
 - Hydrogen sulfide, mercaptans, sulfonic acids
- Nitrogen Compounds
 - Present in all crude oils
 - Pyridines, quinolines, pyrroles, etc.
- Oxygen compounds (found in distillation fractions)
 - Organic acids, Alcohols, ketones, esters, phenols
- Trace Metals V, Ni, Fe, Al, Na, Ca, Cu, U

Average Crude Oil Molecular Type

Paraffin Hydrocarbons = 30%Napthene Hydrocarbons = 50%Aromatics = 15%NSO Compounds = 5%

Terminology

- Light Crudes have more "light ends", such as gasoline, naptha, and kerosine fractions
- Heavy Crudes have more heavy ends such as asphaltenes (higher molecular weight)
- Sweet, Sour Crudes: refer to amount of sulfur present
 - Sweet < 0.5% sulfur compounds</p>
 - Sour < 2.5 % sulfur compounds</p>

Basics of Crude Oil

Terminology

- API Gravity a specific scale, created by API, for measuring the relative density of petroleum liquids, expressed in degrees.
 - API Gravity = (141.5/Sp.Gr at 60° F) 131.5
- Rule of Thumb
 - Higher API Gravity = lighter the crude, less viscous, more light ends
 - Heavy Crudes ~ API 18°
 - Light Crudes ~ API 36° and above

What does this mean for Oil Spill Response?

- Speaking with same knowledge of terminology
- Different types of crudes (and refined products) have differing fate and transport when spilled
 - Heavy vs light, API Gravity?
- Types of crudes important for Health & Safety, e.g. Sour oil will have H2S present
 - Air monitoring at spill, what to look for at production site, etc.

Basics of Crude Oil

 Examples of 40 Different grades of Crude flow thru the U.S.

Type	API	S%	Type	API	S%
<u> 1 </u>	/	<u>0 70</u>	1,100	7 (1 1	<u>570</u>
W.T. Sour	33.5	1.78	Bacquero	22.8	1.95
Dom. Sweet	40.0	0.420	Basra	33.5	2.10
ANS	26.4		Kirkuk	33.7	2.14
Bonny Light	35.2	.01750	Brent	38.0	0.3760
Maya	22.5	2.95	Mesa	30.3	0.980
Isthmus	32.5	1.320	Velma	26.4	
Rata	24.2	4.000	Cusian	29.4	0.2950
ABH	27.4	2.700	Olmeca	38.3	0.950

Region 10 Dominant Crude Oils

- Alaska North Slope
- Bakken Shale
- Alberta Oil Sands/Tar Sands

Bakken Shale Sweet Crude

- Light blend
- API gravity ranging from 40 to 42 degrees
- Sulfur content ranges from 0.17-0.20% (~4000 ppm)
- Generally low in metals content as well as asphaltenes
 - emulsification is relatively low when released to water
- These characteristics allow refiners to process the product rapidly for high throughput

Region 10 Presence

- Tesoro Anacortes 40,000 bbl/day
- BP Cherry Point 20,000 bbl/day
- Columbia Pacifc Bio-Refinery
 - 67,000 bbl/day
- Tesoro Vancouver 2014 (120,000 280,000 bbl/day)
- Gray's Harbor under consideration
- Port of Lewiston under consideration

Prep for transport

- Upgrade: Synthetic Crude = SynBit
 - Remove carbon, add hydrogen
- Dilute: Diluted Bitumen = Dilbit
 - Paraffinic (C6-C6 natural gas condensates)
 - Naptha or gas oils, conventional crudes
 - Can span a wide range of compositions

Prep for transport

- Bitumen is "blended" with light oil to meet transmission pipeline specs
 - Needs 30% by volume of diluent for dilbit
 - Needs 50% by volume of synthetic crude for synbit
- Railcar/vessel specs vary

	Benzene
	Content (%)
Dilbit	0.03 - 0.3
Synbit	<0.5
Bakken	0.1 - 1.0
ANS	0.3

Spills

 If a spill of oil sands products were to occur, responders will have to prepare for both a light, floating oil depending on the diluent used and the potential for a heavy, submerged or sinking oil

Major OSP spills

- 2007 Burnaby BC pipeline spill
 - No air monitoring concerns
 - No submerged/sunken oil detected

Major OSP Spills

- 2010 Kalamazoo River
 - Air quality
 - Diluent had low flash point
 - 331 people reported adverse effects
 - Submerged and sunken oil issues

Air Monitoring & Sampling

- Public Health concern for residents and workers during first 30 days
- · Thousands of air monitoring readings collected
- Hundreds of air samples collected
- Voluntary evacuation at 60 residences

Air Monitoring & Sampling

- Air monitoring conducted using:
 - MultiRAE
 - Benzene UltraRAEs
 - AreaRAEs
 - Draeger tubes
 - HAPSites
- Air Sampling conducted using:
 - Summa Canisters Summa Canisters
 - Tedlar Bags Mobile Lab
- Evacuation and Re-entry Decision Trees Established
- Benzene main public health driver
- Evacuation Action Level
 - 200 ppbv benzene when monitoring
 - 60 ppbv benzene when sampling
- Reoccupation Action Level 6 ppbv benzene sampling

OSP Response Considerations

- MSDS Availability
- Properties
 - Content of lowest boiling components that boil below 200 F
 - Air quality immediately after spill
 - Rate of loss
 - Contents of highest boiling components
 - Submerged and Sunken oil?

